Objectives:

- Estimate function values using linear approximation.
- Compute differentials.
- Estimate error using differentials.

Motivation: Suppose your life depends on getting an accurate approximation of a function value but all you have at your disposal is a ruler and a four-function calculator! Or maybe you aren't given a function at all but only a nearby point and the value of the derivative at that point.

Example: Approximate $\sqrt[3]{8.1}$ using only a four-function calculator and your knowledge of calculus.
Step 1. Guess!
We know 8.1 is close to 8 and $f(x)=\sqrt[3]{x}$ is continuous, so $f(8)$ and $f(8.1)$ will be close. So we guess

$$
\sqrt[3]{8.1} \approx 2
$$

Step 2. Understand our estimate better using the information from the derivative.
(a) Is $f(x)=\sqrt[3]{x}$ differentiable at $x=8$?

Using the power rule,

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}
$$

So $f(x)$ is differentiable at $x \neq 0$ so we can use the derivative to know how $f(x)$ is changing at $x=8$ to make a better guess.
(b) Find $f^{\prime}(8)$.

$$
f^{\prime}(8)=\frac{1}{3} 8^{-2 / 3}=\frac{1}{3 \cdot 8^{2 / 3}}=\frac{1}{3 \cdot \sqrt[3]{8}^{2}}=\frac{1}{3 \cdot 4}=\frac{1}{12}
$$

Since $f^{\prime}(8)$ is positive, our first guess was too low.
Step 3. Use $f(x)=\sqrt[3]{x}$ and the tangent line at $(8,2)$ to approximate $\sqrt[3]{8.1}$ better than before.
(a) Important Observation: When our function is smooth, a tangent line at a point is really close to the function near that point so the tangent line at $x=8$ will give us a reasonable approximation near $x=8$.
(b) What is the tangent line at $(8,2)$?

Slope: $f^{\prime}(8)=\frac{1}{12}$ Point: $(8,2)$ Tangent line:

$$
y-2=\frac{1}{12}(x-8) \quad y=\frac{1}{12}(x-8)+2
$$

(c) What is the y-value of the tangent line at $x=8.1$?

$$
y=\frac{1}{12}(8.1-8)+2=\frac{1}{120}+2 \approx 2.00833333
$$

So we estimate $\sqrt[3]{8.1} \approx 2.0083$.
(d) Compare this to a calculator output:

$$
\sqrt[3]{8.1}=2.00829885
$$

So we were really close! How close? Compute the error by taking the difference:

$$
\text { error }=2.00833333-2.00829885 \approx 0.000034483
$$

Recap: For a differentiable function $f(x)$, we can use the tangent line to $f(x)$ at $x=a$ to estimate the values of $f(x)$ when x is near a. In general, the equation of the tangent line to $f(x)$ at $x=a$ is given by

$$
y-f(a)=f^{\prime}(a)(x-a) \quad \text { or } \quad y=f(a)+f^{\prime}(a)(x-a)
$$

If $f(x)$ is a differentiable function at $x=a$ then the tangent line approximation (or linear approximation) to $f(x)$ at $x=a$ is the function

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

Near $x=a$, this can be used to approximate $f(x)$:

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Example: Use the tangent line approximation to estimate $e^{0.1}$. Compare to the value given by your calculator.

$$
f(x)=e^{x} \quad f^{\prime}(x)=e^{x} \quad a=0 \quad f(a)=1 \quad f^{\prime}(a)=1
$$

So near $x=0$,

$$
e^{x} \approx L(x)=f(a)+f^{\prime}(a)(x-a)=e^{0}+e^{0}(x-0)=1+x
$$

At $x=0.1$,

$$
e^{0.1} \approx 1+0.1=1.1
$$

Calculator: $e^{0.1} \approx 1.105171$

If $y=f(x)$ where f is a differentiable function, then we can define the differential $d x$ as an independent variable and the differential $d y$ in terms of $d x$ as

$$
d y=f^{\prime}(x) d x
$$

Where does this come from?

$$
\begin{aligned}
y \approx L(x) & =f(a)+f^{\prime}(a)(x-a) \\
f-f(a) & \approx f^{\prime}(a)(x-a) \\
d y & =f^{\prime}(a) d x
\end{aligned}
$$

Note: $\Delta y=f(x)-f(a)$ so $\Delta y \approx d y$

Example: Find the differential of $y=\sqrt{1+\ln (x)}$.

$$
d y=\frac{1}{2}(1+\ln x)^{-1 / 2}\left(\frac{1}{x}\right) d x
$$

Example: A cube was measured to have a side of length 20 cm with an error of up to 0.3 cm . What is the maximum error in measurement of the volume of the cube? How about the relative error?
Volume of a cube: $V=x^{3}$ so $d V=3 x^{2} d x$ where $x=20 \mathrm{~cm}$ and $d x=0.3 \mathrm{~cm}$. So

$$
d V=3(20 \mathrm{~cm})^{2}(0.3 \mathrm{~cm})=360 \mathrm{~cm}^{3}
$$

So our possible error in measuring volume is up to $360 \mathrm{~cm}^{3}$.
To find relative error in measuring x, we divide $d x$ by x.
Relative error in measurement of x :

$$
\frac{d x}{x}=\frac{0.3 \mathrm{~cm}}{20 \mathrm{~cm}}=0.015=1.5 \%
$$

Relative error in measurement of volume:

$$
\frac{d V}{V}=\frac{360 \mathrm{~cm}^{3}}{8000 \mathrm{~cm}^{3}}=0.045=4.5 \%
$$

